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ABSTRACT 

Homogeneous graded metrics over split Z~-graded manifolds whose Levi- 

Civita connection is adapted to a given splitting, in the sense recently 

introduced by Koszul, are completely described. A subclass of such is 

singled out by the vanishing of certain components of the graded curvature 

tensor, a condition that plays a role similar to the closedness of a graded 

symplectic form in graded symplectic geometry: It amounts to determining 

a graded metric by the data {g, w, V'},  where g is a metric tensor on M, w 

is a fibered nondegenerate skewsymmetric bilinear form on the Batchelor 

bundle E ---* M, and V'  is a connection on E satisfying V'w = 0. Odd 

metrics are also studied under the same criterion and they are specified 

by the data {~,V'}, with ~r E Hom(TM, E) invertible, and ~7'~ = 0. It 

is shown in general that  even graded metrics of constant graded curvature 

can be supported only over a Riemannian manifold of constant curvature, 

and the curvature of V j on E satisfies R v~ (X, y)2 = 0. It is shown that 

graded Ricci flat even metrics are supported over Ricci fiat manifolds and 

the curvature of the connection V'  satisfies a specific set of equations. 

Finally, graded Einstein even metrics can be supported only over Ricci flat 
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Riemannian manifolds. Related results for graded metrics on ~ (M)  axe 

also discussed. 

In troduct ion  and results  

BACKGROUND. Let M be an m-dimensional smooth manifold, and let C ~  be 

the sheaf of smooth functions on M. Let E ~ M be a vector bundle of rank n, 

and let E be its sheaf of smooth sections. Let hs be the sheaf of smooth sections 

of the exterior algebra bundle AE ~ M. This is a sheaf of Z~-graded (graded- 

commutative) algebras over M, and the ringed space (M, AC) is a split g raded  

manifold of dimension (m, n). Abstractly, a smooth graded manifold is defined 

as a ringed space (M, A), where A is a sheaf of Z2-graded (graded-commutative) 

algebras over a smooth manifold M, and one is given the exact sequence 

o +  H - - ,  A-- ,  A /./V'--,o 

in which Af is the nilpotent ideal of A, and A/A; is the sheaf C ~  (regarded as 

trivially graded). Holomorphic graded manifolds are defined similarly. Smooth 

graded manifolds are split; i.e., there exists a smooth vector bundle E ~ M such 

that A -~ AC (see [1]). By way of contrast, holomorphic graded manifolds are 

not always split (see [3], and [10]). Also, there are obstructions to split smooth 

graded manifolds equivariantly under the action of a given Lie group [12]. 

A new and enlightening characterzation of split graded manifolds has recently 

been given by Koszul in [7]. He has shown that a graded manifold splits if and 

only if (Z2-graded) connections exist, and that such exist, if and only if some spe- 

cial derivations of the structure sheaf A--called adap ted  derivations--exist.  

Adapted derivations potentially produce a Z-grading out of the given Z2-graded 

structure in the following manner: The filtration of A defined by the powers 

AY ~ D A ;~+1 (r >_ 0) yields a filtration (DerA) ~ D (DerA) ~+1 (r _> -1)  in 

the sheaf of Z2-graded derivations Der A by letting a section D be in (Der A) ~ 

if and only if DAYP C A; p+~ for all p _> 0. An even derivation H is called 

adapted to this filtration if ( H -  rId)AY ~ C AYe+l; this also implies that 

(ad(H) - rId)(Der A) ~ C (Der A) ~+1. For finite-dimensional graded manifolds, 

there exists a natural number n--the odd dimension--such that Af ~+1 = 0. 
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When an adapted derivation exists, it may be used as in [7] to produce a non- 

trivial morphism (splitting) of Z:-graded ,A-modules, 

,4 ~ ,A/N + N / H  2, 

which fits into the diagram 

.4 ~ Gr,A = Z A f ~ / A  f~+l ~ . A / A f + A f / A  f~ 
r_>0 

thus inducing on .4 the Z-grading of Gr,A via the universal extension of the given 

splitting. Now, Af/Af 2 has the structure of a locally free sheaf of ,A/N-modules; 

that is, a vector bundle (the so-called Batchelor bundle) whose rank is equal to 

the odd dimension. We shall write s instead of Af/A f2 when we think of it as the 

sheaf of sections of the corresponding vector bundle E ~ M. Since Gr,A = As 

a splitting yields a morphism, (M, "A) ~ (M, As which is inverse to the natural 

map (M, As ~ (M, .4) defined by gr: ,4 ~ Gr,A. 

METRICS ADAPTED TO A SPLITTING. The main point of [7] on which we have 

based our work is the relationship between adapted derivations and connections: 

Given a graded connection V: Der'A x Der,A --* Der,A, there exists a unique 

adapted derivation H v ,  having the property that, VH v H v = H v.  Conversely, 

given an adapted derivation H, there exists a graded connection V whose H v 

is equal to H. As we shall only deal with split graded manifolds, we assume that 

the sheaf of Z2-graded algebras over M that we are given is As The splitting (or 

Z-grading) of As = (~k>0 Aks is produced by the adapted derivation H defined 

as the unique degree-preserving derivation As ~ hE which is zero on A~163 and 

the identity on hls Such an H is then uniquely characterized by the property 

that HI^~ E = kIdl^kc, for each k. We call it the  canonical spli t t ing of As 

Also, it shall be assumed throughout this paper that Der As has the Z grading 

defined by H: The Z-degree IDI of a Z-homogeneous element D makes sense only 

for derivations D such that ad(H)D = IDID. 

Our purpose is to characterize the class of homogeneous Z2-graded metrics 

( �9 �9 ): Der ^s x Der As --* ^s whose Levi-Civita graded connection ~7 satisfies 

"~HH = H for the canonical splitting H of hE. We shall say that these metrics 

are adap ted  to  the  canonical spli t t ing of As When a connection on the 

bundle E -~ M is given, such graded metrics are described by a set of sections 
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from S2(Der C~)* | AE, (Der C~)* | s | A~:, and (A2E) | As having some defi- 

nite symmetries and satisfying some specific relations between them (Proposition 

2.3 below). The automorphism group of the Z2-graded algebra As acts on the 

space of graded metrics and it is shown (Theorem 2.4) that the description of 

Proposition 2.3 is complete up to the action of Aut A ~. 

In order to get a better hold on the structure of these metrics we restrict our 

attention to the subclass of those having second order  depth;  this means that 

a graded basis {D~} of Der As exists for which 

k_~2 

It is shown (Proposition 3.1) that this subclass is characterized by the fact that 

the endomorphism Der A~ ~ D ~ R(H, D)H �9 Der As being the graded 

curvature of the Levi-Civita graded connection--vanishes identically. Further- 

more, it is shown (Proposition 4.1) that for such metrics a connection V ~ on E 

can be chosen to completely describe them by fewer tensors: If the graded met- 

ric is even, it requires an ordinary metric tensor g on M and a non-degenerate, 

skewsymmetric, bilinear (fibered) form w �9 A2~, with V~w = 0. In short, an even 

adapted metric of this sort is characterized by the data {g, w, V~}. Moreover, w 

is actually determined by H, since (Proposition 2.1) 

w = c ( H , H )  (c a constant factor). 

When odd adapted metrics exist (dimE = dimM = 2n) the data is {~, V'}, 

where ~ �9 (DerC~)* | g defines a non-degenerate bilinear pairing and V ~ is a 

connection on E chosen in such a way that the subspace (Der A~)0 of degree-zero 

derivations becomes totally isotropic. These results are to be contrasted with 

those corresponding to graded symplectic structures on split graded manifolds 

(M, As (see [8] and [11]): The fact that a graded symplectic form is closed makes 

it possible to always characterize it by reduced data of this sort. In the graded 

Riemannian case the condition R(H, �9 )H = 0 is what allows the reduction. 

To explain how close this relationship really is we recall the main result from 

[11]: Let E --* M be a vector bundle over a symplectic manifold M with sym- 

plectic form w. Let V be a connection on AE and let g be a fibered metric on 

AE compatible with V. The data {g, w, V} uniquely defines a graded symplectic 
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structure on (M, ^s Furthermore, its structure is of second order depth: 

there exists a graded basis {Da} of Der As such that 

#;(D~,,Da) E (~Akg.  
k<_2 

In fact, any graded symplectic form on (M, As is, up to the action of Aut A s 

of this type. The proof of this assertion depends strongly on the fact that ~ is 

closed (see [8] and [11]), and on the fact that the cohomology derived from the 

graded differential forms is isomorphic to the de Rbam cohomology of the base 

manifold M. 

Resuming: Second order depth in the graded Rieman~ian setting is shown here 

to be equivalent to R(II, �9 )H = 0, where R is the graded curvature of V. In 

the concrete example of the graded manifold defined by the algebra f~(M) of 

differential forms on M, the allowed connection V ~ for which V~w = 0 has some 

torsion. It turns out that w is closed if and only if this torsion belongs to the 

symplectic algebra of w. In particular, if V '~ is the Levi-Civita connection of g, 

then d w = 0. In other words, we come as close as we can get to the data that 

defines a graded symplectic structure on a split graded manifold. 

GRADED RIEMANNIAN CURVATURE. We have computed in w the graded cur- 

vature and the graded Ricci tensor for the adapted, even, second-order depth 

metrics. The explicit results show that amy notion of 'graded sectional curvature' 

involving (2, 2) dimensional 'planes' would imply that the curvature R v' (X, Y) E 

End g'--which at each point defines an element of sl~ in the corresponding 

fiber--acts like a scalar. Therefore, we restrict the definition of sectional cur- 

vature only to nondegenerate (2, 0)-dimensional submodules of Der As It is 

then shown (Proposition 5.1) that split graded manifolds (M, As of constant 

curvature can be supported only over an ordinary Riemannian manifold M 

of constant curvature, and the curvature of the connection ~7' acts as a two- 

step nilpotent operator: RV'(X,Y)RV'(X,Y) = O. It is also shown (Propo- 

sition 5.2) that graded Einstein manifolds can be supported only over Ricci 

flat manifolds M. Finally (Proposition 5.3) graded Ricci flat manifolds can be 

supported over Ricci flat manifolds M for which the curvature of V ~ satisfies 

~_.~,b(g-1)baRv' (X, Xa)Rv' (Y, Xb) = O, and 

~'-'~(g-')b, (Vx, RV') (Y, Xb) = 0 
a,b 
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where ~ denotes the connection on the tensor algebra generated by TM, E, T'M, 
and E*, induced by the Levi Civita connection V on TM and the connection V ~ 

o n  E .  

SPECIAL RESULTS FOR ~ ( M ) .  It is also worth mentioning that among the odd 

second order depth adapted metrics obtained for the graded manifold defined by 

the algebra f~(M) of differential forms on M, those corresponding to a symmetric 

tensor n have been studied before and have been characterized by the condition 

that the exterior derivative d is a Killing graded vector field (see [9]). But now, 

the results obtained in w167 below allow us to further explore the role played by 

the exterior derivative d when a graded adapted metric is given on ft(M). Our 

starting point is the Lie superalgebra g of dimension (1, 1) generated by H, and 

d (in this setting, H = ild, where Id E F(Hom(TM, TM)) "~ F(T*M | TM)): 

[H, H] = O, [H, d] = d, [d, d] = 0. 

It is then natural to investigate whether or not g generates (local) isometries or 

(local) conformal transformations for the graded adapted metrics of second order 

depth. The corresponding problem for symplectic graded geometry has been ap- 

proached in [13] in connection with BRST quantization of constrained dynamical 

systems. It has been proved there that g does generate graded symplectomor- 

phisms. We have shown here that the answer in the graded Riemannian setting 

is negative (Proposition 6.1). Another point is to investigate whether or not V 

represents g. That is, whether or not the graded curvature components 

R(H, d) = ~ r H ~ 7  d -- ~ T d ~ H  -- ~7 d and R(d, d) = 2~7d~Yd 

vanish identically. One may prove that ~r d d = 0 in general for adapted metrics, 

but the curvature components R(H, d) and R(d, d) are in general nonzero. In 

fact, for adapted metrics of second order depth, the obstruction for representing g 

by ~ is measured by the curvature R v'. Besides, the problem of understanding 

the structure of ~ d  is fax more complicated than that of ~TH. Finally, and 

inspired by results from [13], [14] and [7], we also investigate whether or not 

there is a derivation d ~ such that 

[H, d'] = d' and [d', d'] = 0 

with d' in the f~(M)-span of H and d and (H, d') = 0. This requires first the 

existence of a nonvanishing function f on the base manifold M so as to define 
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d ~ = f d - d s  Then, for even metrics one obtains (H, d ~) = 0 if and only if 

f-2(H, H) = cf-2,J is closed (c a constant factor). For odd metrics (H,d ' )  = 0 

if and only if Ko defines a Riemannian metric on M. 

1. G r a d e d  m e t r i c s  on  As 

Notation and conventions: Let M be a smooth, real, n-dimensional manifold. 

For any sheaf Dr over M we shall freely write a E ~- for a section a of the sheaf .T" 

over an arbitrary open subset on M. If G is any other sheaf over M, the notation 

~: .T ---+ ~ shall always be understood as a sheaf morphism, and we shall usually 

specify its effect on sections by writing a ~ r  We shall denote by As the 

structure sheaf of a given (split) supermanifold (M, As We shall think of s as 

the sheaf of sections of a given vector bundle E ~ M, and hs  is then the sheaf of 

sections of the exterior algebra bundle AE ~ M. When we refer to 'a metric on 

AS' it shall always be understood as an abbreviation for 'a metric on (M, As 

We shall now summarize from [9] the pertinent definitions and results needed 

for this work. For the basics on graded manifolds we refer the reader to [6]. 

1.1 Definition: A Z2-graded metric on hs  is a graded-symmetric, nondegenerate 

Js map, 

( �9 , �9 ): DerAs x DerAs ~ As 

That  is, 

(1) (aDl, D2) = a(D1, D2), a e As 

(2) (91,92)= (-1)l~ 

(3) The map D ~ (D, �9 ) is an isomorphism between the hC-modules Der hs  

and Hom(Der As ^s 

A graded metric is even (resp., odd) if 

[(D1, D2)I+[DI[+[D21-O (mod2), ( r e s p . , = l  (mod2)).  

In any of these cases the graded metric is called homogeneous. 

1.2 Definition: A graded connection on As is a mapping 

V:  Der As x Der As ~ Der As 

(D1, D2) ~ •DiD2 
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satisfying the following conditions: 

(I) VD,(D2 + D3) -- VDzD2 + VD, D3, 
(2) V(D,+D,)D 3 = VD, D3 "[- VD2D3, 
(3) ~g'aD, D2 = aVD, D2, 

(4) WD,(aD2) = Dl(a)D2 + (-1)IO, II'~IaWD, D~, 

where a 6 AC. A graded connection in As is called Z-homogeneons of degree IVl 
if for any pair (DI, D2) of homogeneous derivations, (D1, D2; V) is homogeneous 

and 

IVo, D~I = ID,I + IDol + IVl 

Furthermore, ~' is said to be even (resp., odd) if 

[VDID21+IDll+ID2[-O (mod2), (resp.,--1 (mod2)). 

1.3 Definition: The torsion, T, of a graded connection is defined by 

T(Db D2) = VD, D2 - (--1)ID'IID~IVD2D1 --[D1, D2]. 

1.4 Definition: Let ( �9 , �9 ) be a graded metric, and V a graded connection on 

As ~i~ is met r ic  if, for all homogeneous derivations D, DI, and D2, 

D(D,, %) = (V DD,, %) + (-1)W, IIDt(D1, W~ 

+ (--1)I• VIDD2), 

where V = V ~ + V 1 is the decomposition of the graded connection into its even 

and odd components. 

1.5 THEOREM: Given a graded metric, there is a unique torsionless and metric 

graded connection given by the formula 

2(VDI D2, D3) =D1 (D2, D3) - (--1)IDaI(]DII+]D2]) Da(D1, D2) 

+ (-1)IDa[(ID2I+IDaI)D2(D3, D1) + ([DI, D2], D3) 

- (--1)ID'I(ID21+ID31)([D2, D3], D1) 

+ (--I)ID31(ID'I+IO21)([D3, D1], D2). 

Remark: We shall refer the reader to [9] for the proof. We only remark here 

that the graded Levi-Civita connection for a homogeneous graded metric is always 

even. In this work we shall deal exclusively with homogeneous graded metrics. 
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It is worth mentioning how the group Aut A s of Z2-graded algebra automor- 

phisms of hE acts on the geometrical objects that we shall be dealing with: 

(1) Aut A s acts on the left of Der hs by graded Lie algebra automorphisms 

via 

r162 D �9 DerAs 

(2) Ant A E acts on the right of the graded metrics on As by automorphisms 

via 

( D I , D 2 ) * = r  ( . , . )  a graded metric on h s  

(3) Aut A s acts on the right of the graded connections on As by automor- 

phisms via 

D, 
W a graded connection on A s 

1.6 PROPOSITION: Let V (resp., W*) be the graded Levi-Civita connection of 

the graded metric (., .) (resp., (., .I.r Then, W r = V .  r 

Proof'. This is a straightforward computation. | 

2. Characterization of the graded metrics adapted to the canonical 

splitting 

According to [7], any even connection V on As gives rise to a unique splitting 

derivation H V 6 Der As such that Why H v : H v.  As it was mentioned be- 

fore, we shall assume that the splitting H is the canonical splitting that produces 

the given 7~-grading on As = ~k>o h~ s We now want to characterize the homo- 

geneous graded metrics on hE that are adapted to this canonical splitting, i.e., 

those for which H v = H, where W is the corresponding Levi-Civita connection. 

2.1 PROPOSITION: 

(A) An even graded metric ( �9 , �9 ) is adapted to the canonical splitting if 

and only if, for any homogeneous derivation D, (H, Dt = Dw(2), where 

2w(2 ) = (H, H) �9 A~s 

(B) An odd graded metric ( �9 , �9 ) is adapted to the canonical splitting i[ and 

only if, for any homogeneous derivation D of degree k, (H, D / �9 A~+1s 
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Proof'. Let D be a Z-homogeneous derivation for the Z-grading induced by H. 

From the definition of the Levi-Civita connection we get 

2 (WHH - H, D) = 2 (H(H,  D) - (1 + ]DI)(H, D)) - D(H, H). 

Therefore, H is the canonical splitting for W if and only if 

2(H(H,D) - (1 + IDI)(H,D)) = D(H,H). 

In particular, for D = H, obtain H(H,H) = 2(H, H), and it follows that 

( H , H )  = 2a~(2) E A2s If ( �9 , �9 ) is odd, this implies ( H , H )  = 0 because 

I(H, H)I should be odd. In short, H is the canonical splitting for V if and only 

if, for any homogeneous derivation D, 

( 2 + [ D I ) ( H , D )  and ( H , D ) = D w ( ~ ) ,  if ( - ,  . ) i s e v e n ,  
H(H,D}= ( I + [ D [ ) ( H , D )  and ( H , H ) = 0 ,  if ( . ,  . ) i s o d d ,  

from which the assertion follows. | 

Remark: We have used the fact that the Z-grading of AC is defined by the 

eigenspaces of the canonical splitting H, and that the Z-grading of Der As is 

defined by the eigenspaces of ad(H) (cf. [7]). 

This proposition says how ( �9 , �9 ) acts on the pairs of derivations (H, D), 

with D homogeneous. This information, however, does not determine yet the 

structure of such graded metrics. In order to elucidate its nature even further 

we need to go into the structure of the left As Der As (cf. Introduction 

above): 

Use will be made of the fact that Der As is a locally-free sheaf of As 

[6], whose structure can be described as follows (see [8] and [11]): Let s be 

the sheaf of sections of the dual bundle E* ~ M. There is a monomorphism 

i: s ~-~ Der AE defined by letting each section )~ E s act on As as a degree - 1  

derivation: 

ix(S1"" "Sk)= ~(-1) '~+I(XIs~)Sl '"  "'~'g~'"Sk 
a>l 

on decomposable sections Sl '"$k  E Akg (with s~ E AIs Similarly, End s acts 

on AC by degree-preserving derivations by letting i: EndE ~-~ DerAs be given 

by 

E n d s 1 6 3 1 7 4 1 6 3 1 7 4  ~ i A = Z s ~ , i x ,  EDerAs 
/~=1 /z----1 
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It easily follows that i extends uniquely to (As163 thus giving a monomorphism 

i: (As | E" ~ Der As 

In particular, Id 6 End s and H = lid is the canonical splitting of As On the 

other hand, let XM = Der C ~  be the sheaf of smooth vector fields on M. A 

connection V on As gives, by definition, a morphism 

(As • ~M "=+ Der As 

a |  

which is in fact a splitting for the exact sequence of locally free sheaves of AE- 

modules 

0 -* hE | E* --+ Der hE --~ As @ ~ M  ~ 0. 

The projection Der As --, As | 3EM is given on a filtration degree k derivation 

D 6 Der As as follows: 

D ~ b 6 Hom((AE)*,3EM) ---- Hom(AE*,i~M) ~ As | ZM, 

D(XI"'" Xk) = i x , ' "  i• 

We shall fix for the moment a linear connection V on AE. Then there is a 

set of sections associated to a given graded metric ( �9 �9 ) that can be described 

in terms of the basic derivations Vx,  and i x (X 6 3EM and X 6 E*): The map 

(X, ~) ~ (ix, i~,) 6 AE is clearly C~176 and skew-symmetric. It therefore 

defines a unique element L 6 A2s | ^s We shall write 

(ix,i~o) = L o ( X , ~ ) + L I ( _ ; X , ~ ) + L 2 ( _ , _ ; X , ~ ) + " "  , Lk 6 A2E@Aks 

We shall also write 

(ix,iv) = Lo(X,~) + Lt(X,~) + L2(X,~o) + ' " ,  Lk(x,~o) �9 h):g. 

In a similar manner, the map (X,Y))---) (Vx,VY) 6 As being C~176 

and symmetric, defines a unique element P 6 $ 2 : ~  | As We shall write 

(~Tx,Vy) = Po(X,Y) + PI(_;X,Y)  + P2(_ ,_;X,Y)  + " ' ,  

where Pk 6 $23E~ | Aks Finally, (X, X) ~ (Vx, i x) defines a unique element 

K 6 3[~ | E | As and 

(Vx ,  ix) = Ko(X, X) + KI(_; X, X) + K2(_,_; X, X) + ' " ,  

with Kk �9 3 ~  | s | A~s We summarize this as follows: 
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2.2 PROPOSITION: Let V be a linear connection on AE, and let ~/E g2. There 

is a one-to-one correspondence between the set of graded metrics of degree ~ on 

As and the set of sections (P, K, L), with 

k_>0 k_~0 

k>o k>o 

L = L2k+, e | ^2k+'e, 
k_~O k~O 

where, in the even case, Po and Lo are non-degenerate, and in the odd case Ko 

is non-degenerate. 

Remark: When ( . ,  �9 ) is even, Po and Lo must be nondegenerate. In particular, 

Po = g defines a pseudo-Riemannian metric on M, and Lo = w a nondegenerate 

skew-symmetric fiber bundle map E* x E* ~ R; the latter restricts the rank of 

E to be even dimensional. On the other hand, when ( �9 , �9 ) is odd, Ko = 

must be a nondegenerate bilinear pairing between 3~M and s thus restricting 

the supermanifold dimension to (n, n). 

Convention: We shall write a homogeneous graded metric ( �9 , �9 ) on As in the 

form, 

P = P ~ + P 4 + ' "  } 
( g + P  K ) where K = K I + K s + . . .  (even metric) 
\ K t w + L  L = L 2 + L 4 + ' "  

( " ' )=  P = PI + P3 + ' "  

~t + K t where K = K2 + K4 + " "  (odd metric) 

L = L1 + L3 + " "  

where P~ E Aks | $ 2 ( : ~ ) ,  L~ E Aks | A2s and Kk E Aks | : ~  | s are 

defined in terms of a given connection V. These matrices may be understood 

as As matrices, provided that local frames {X.} on M and {X-} on E* 

have been chosen, and we write 

K,~ = Ko(Xa, X~) + KI(_; Xo, X~) + K2(_,_; X~, X~) + " " ,  

with similar conventions for Pab and L ~ .  
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We shall now throw in the information from Proposition 2.1 of how (H, �9 ) 

acts on the basic homogeneous derivations Vx ,  and i x (X E XM, and X E s 

when VHH = H, to further restrict the possibilities for the sections P,  K, and 

L. We shall make use of the following Young symmetrizers (cf. Proposition 2.3 

below). First, let 

A: A 2 s @ Ak~"'+Ak+2~ = (Ak+2s * = Hom(Ak+2E*,A~163 

be the map defined by 

k+l 

(AL)(Xl,.. . ,  Xk+2) = E ( - 1 ) a - I L ( x 1 , . - . ,  X~'~,. -. , Xk+l; X~, Xk+2). 
ot=l 

It is immediate to verify that A is well defined, and A 2 = A under the appropriate 

identifications. Note that if L = L2, 

AL2(xI,X2;X3, X4) = E 
Cyclic {1,2,3} 

L2(X1, X2; X3, X4). 

B: Ak s | 3E~ | s ~ Ak+ls | X~  --~ Hom((Ak+ls *) | ~M, A 0~') 

be the map defined by 

k+l 

(BK)(xI , . . . ,  Xk+l; X) = ~-"~( -1)a - IK(x1 , . . . ,  X"~,..., Xk+l; X, Xa)" 

Again, B is well defined and B 2 = B under the appropriate identifications. In 

particular, if K = K2, 

BK2(xl, X2, Xa; X)  = 

whereas if K = K3, 

E K2(X1, X2; X, Xz), 
Cyclic {1,2,3} 

BK3(xl, );2, X3, X4, X) -- K3(X2, X3, X4; X, )~1) - K3(X1, X3, X4; X, X2) 

+ K3(X1, X2, X4; X, X3) - K3(Xb X2, X3; X, X4). 

In particular, Ker(AIr(^2T.M| ) has the same symmetries as the 

a lgebra ic  c u r v a t u r e  tensors ,  since L2(X1, X2; X3, X4) d- L2(X1, X2; X4, X3) : 0, 

and L2(X1, X2; X3, X4) d- L2(X2, X1; X3, X4) = 0 ([2] Dill. 1.108). Now let 
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2 .3  PROPOSITION: Let V be a linear connection on M. 

(A) An even graded metric ( - ,  �9 > is adapted to the canonical splitting H i f  

and only if  

{i x, i v) = -w(2)()C, ~) + L+(_; X, ~), 

(Vx, ix) = KI(_; X, X) + K+(_; X, X), 

where 

L+ E (@A2ks174  A2s 
k_>l 

and 

(B) 

K+ E ( ( ~ A 2 k - ' s 1 7 4 1 6 3  |  
k>l  

KI(X; Y, ~) - KI(~; Y, X) = (Vy~(2))(~, X). 

An odd graded metric ( -, �9 } is adapted to the canonical splitting H if  

and only i f  

(i x iv) = L(X,~),  

(Vx, ix> = Ko(X, X) + K+(X; X), 

where 

L E ( ( ~  A2k-I~ | A2~) N Ker A; 
k_>l 

K+ E ( ( ~  A2ks | : ~  | KerB. 
k_>l 

Proof: Let {Xa} be a local basis of vector fields and let {sa} and {XZ} be local 

dual bases for sections of s and s respectively. The identity Id E Ends can 

be locally written as ~ sa | Xa- Let us suposse that (ix, iv) = L(X, ~) where 

L E (~)k>o A2ks | A2E" From the equality (H, iv) = ivw(2) we obtain 

Z s~L(xa, ~) = ivw(2 ). 
Ot 

From this we have L(0) = -w(2), and L+ = L - L(0) E KerA. The other proofs 

are similar. I 

Remark: So far, we have used a connection V on AE to define the tensors P, K, 

and L associated to a graded metric. For example, L is clearly independent of the 

choice of •, since it is defined through (ix, iv). The question of how K depends 
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on V is easily settled directly from the definitions and the previous results. We 

may write V~. - V y  = - i~ (y )  as derivations of As with A(Y)  E End AC. Then, 

K1 (X; Y, qo) = Klv()C; Y, cp) - (iA(V)oa(2))(X, qo) 

and 
V t K+ (_; Y, = Y, + L+(_; A(Y)_, 

We shall see in w below how, under certain hypotheses, a natural change of 

connection exists that also simplifies the P-entries. 

We conclude this section with the following result which is a consequence of 

the previous proposition, and of proposition 1.2 of [7]: 

2.4 THEOREM: Let ( . ,  �9 ) be a homogeneous graded metric; then there exists 

an automorphism of the graded algebra of differential forms, ~: A s -~ As such 

that the metric ( �9 �9 )r has the form described in the previous proposition. 

Proof'. Let G be a homogeneous graded metric, let ~ a  be its Levi-Civita con- 

nection and let H v a  be its adapted derivation. Proposition 1.2 of Koszul says 

that the group of automorphisms of As acts transitively on the set of adapted 

derivations. Then, there exists an automorphism �9 that transforms H v a  into 

H. Therefore, the transformed graded metric ( �9 - )r is adapted to the canonical 

splitting. | 

Remark: This result limits further reductions performed on a graded metric 

via automorphisms of As In fact, based on the grounds that V H H  = H, any 

automorphism must preserve H. That is, A d ( r  = H, which amounts to 

determining all derivations D with ad (D)H = 0, but  this is precisely the set of 

degree-zero derivations. Hence, r can be any automorphism of E. This situation 

is to be contrasted with the graded symplectic case; the fact of having the pairing 

( �9 , �9 ) defined by a c losed nondegenerate graded 2-form is strong enough 

so as to use the automorphism group Aut h s via graded symplectomorphisms 

generated by degree-increasing derivations, which can get rid of most of the 

tensors appearing in ( �9 , �9 /. In the even case, one ends up with the data 

{w, g, V}, whereas in the odd case, with {a, V} (cf. [8], and [11]). The purpose 

of the next section is to determine a condition under which a similar situation 

can be attained for graded metrics. 
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3. A condit ion on the  graded curva ture  

Let R be the graded curvature of V,  

R ( D1, D2)D3 = V D 1 V  D2D3 -- (--1) I DIl ID21V D2 V D1D3 -- V [ DI,D2] D3. 

We shall study the endomorphism 

Der ^ g  ~ D ~ p(D) = R(H,  D ) H  e Der hg. 

Using the fact that V is torsionless, and the fact that H is the canonical splitting 

of V,  we get 

In particular, for a Z-homogeneous derivation D, of degree IDI, 

It follows that 

or  

p(D) = v . ( V . D -  (-I)'D'D), 

p =  VH O V n - -  VH o r  

where F: Der AC --. Der ^C is the R-linear map whose value on a homogeneous 

derivation D of degree ]D I is F(D) -- (--1)IDID. 

It is the purpose of this section to show that, under the additional geometric 

assumption that p be identically zero, one may cut down the number of tensors 

appearing on a homogeneous graded metric adapted to the canonical splitting. 

More precisely, we shall prove the following result: 

3.1 PROPOSITION: Let ( �9 , �9 } be a homogeneous graded metric whose Levi- 

Civita connection is adapted to the canonical splitting H. Then, the following 

conditions are equivalent: 

(1) { �9 �9 ) has at most second order  depth;  that is, 

K1 
with P2 - K l w - I K ~  = 0 

/ 

g + P 2  ( 

(2) • H V X  6 Span^le{i• and V l t i  x = O. 

(3) p(D) = O, for all D 6 Der AE. 

(even metric), 

(odd metric). 
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The proof will follow from Lemmas 3.2-3.5 below, each of which has a sepa- 

rate interest. The first two lemmas have to do with the structure of a general 
homogeneous graded metric and that of its inverse. The third lemma gives the 
structure of VH in terms of {Vx,ix} under the assumption that •HH : H, 

and finally, p is explicitly computed from the known structure of ~'H in Lemma 
3.5. Throughout this section, an implicit use of a fixed connection V will be 

made. 

GENERAL STRUCTURE OF (., .). We shall describe the relationship between the 

Z-graded structure of the most general homogeneous graded metric and the Z- 

graded structure of its inverse. We shall write 

{ (go : )  (even), 
( . , . ) = G + r  where ; = Z C k  and G =  0 

~>1 (~t ; )  (odd). 

Here, Ck is a matrix with entries in ^ks In fact, / -1 /I 2 
= 0 

0 

Now, the inverse of (., .) can be explicitly computed by 

(.,.)-1 ---- Z ( _ _ I ) j ( 5 - 1 r  

(even metric), 

(odd metric). 

k>o 

where ~k is a matrix with entries in Ak~, and 

~o -- -G  by convention, and ~1 = ~1 by definition. 

3.2 LEMMA: Let the notation be as above. Denote by ~(J) the terms lying in AkC 

coming from ~(~- l~) j  (this makes sense for 1 <<_ j < k, and clearly ~(1) = ~k). 

Then, 
k-j-}-1 

~(J)-~- ~ ~(~1)5--1~i, 1 __< j < k, 
i----1 

j>o 

It is convenient to write this (finite) series as an expansion ordered by the Z- 

grading. Namely, 
(.,.)-1 = _ ~ 5-i~k~ -I 
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and furthermore, 
k 

~k = ~ -~( - -1 ) J -1 r  (j).  

j= l  

Proof This is a straightforward proof by induction. | 

We now want to investigate the conditions under which the assumption 43 = 0 

leads to ~a = 0, and also try to tie them up with the conditions under which 

44 = 0 leads to ~4 = 0, and so on. For this reason, the important terms to look 

at will be ~2, ~3, and ~4. It is easy to check that 

~2 ---- 42 -- r162 

~3 ---- 43 - r  -- r162  

~4 "~- 44 "~- (r -- r162 -- ~25-1r  -- (435-141 _~_ r162  

Note that 
p~ - Klw-IK~ 

( o 
( 0 

K~ - Ll~-lP1 

0 ) 
L2 -- K~g-IK1 

Ks - Pl(a-1)tLlo ) 

(even metric), 

(odd metric). 

Also note that  the difference (3(2) _ (~3) = -(r - 43) is given by 

r  r  : 

and, finally, 

[( 0 
K~g-l(p2 - KlW-IK~) 

+ L2w-I K~ 
(even metric) ( K:~-IP1 + Pl(~-l)tK~ 

-pl(,c-1)tLl~-l pl 

0 

(odd metric) 

(P2 - KlW~IK~)g-IK1 
+Klw-IL2 

0 

0 
K ~ ( t c - 1 ) t i l  + L l t ~ - I K 2  

-Lltc-l pl(tC-1)tp 1 

(P2 - Klw-IK~)g-IP2 0 ) 
0 (L2 - K~g-IK1)w-IL2 
(even metric), 

0 

( K~ - LltC-I p1)(Ic-1)t K2 
(odd metric). 

(K2 - Pl (tC-1)tL1)tc-l ) 
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3.3 LEMMA: 

(A) Let ( . ,  .> be a homogeneous graded metric. Then ~2) _ {~3) and {2G-1~2 

vanish identically if either 

P 2 - K l w - I K ~ = O  and L 2 = 0 ,  or 

L 2 - K ~ g - I K 1  0 and L~ 0, 

when the metric is even, and if either 

P 1 = 0 ,  and K 2 = 0 ,  or 

L1 0, and K2 = O, 

if the metric is odd. 
(B) Suppose ~2) _ ~3) and ~2G-1~2 vanish identically, and assume that for 

some integer k > 4, ~3 . . . . .  ~k-1 - 0. Then, ~3 . . . . .  ~k-1 = 0. 

Moreover, 

~k "~- ~k and ~kq-1 = ~k+l -- ~15-1~k -- ~ke-l~l �9 

Proof The proof is by induction. The case k = 4 follows from the explicit ex- 

pressions above. Now let k > 4 be as in the statement. The induction hypothesis 

(applied to k - 1) says that when ~3 . . . . .  (k-2 = O, then {3 . . . . .  {k-2 = O, 

and 

{k--1 = ~k--1 and ~k = {k - ~lG-l~k-1 - ~k-lG-l{1 �9 

But then, if k is as in the statement, ~k-1 = 0 and hence ~k-1 = O, and fk = ~k. 

The expression for ~k+l follows now from the general formula for ~k given in the 

previous lemma, and the induction hypothesis. | 

THE STRUCTURE OF ~ H  D. We now want to compute ~ H D  for D ranging 

over a basis of graded derivations, say {Vx~, ix .  }, where {X~} is a local frame 

on M, and {X~} is a frame for s dual to a frame {s~} o f s  

The starting point is the formula for the Levi-Civita connection. Using it in 

conjunction with Proposition 1 of w one obtains 

(~'HD1, D2) = 

�89 + (IDll- ID2])(D1,D2)) 

(even metric), 

�89 + (IDll- [D21)(D1,D2)) 

+ (D1 (H, D2) - (-1)JDllID2 [ D2(H, D1) - (H, [D1, D21>) 

(odd metric). 
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Even though the formula for the odd metric looks more complicated, it may 
be simplified enormously when D1 and D2 run over a set of generators --say 

{Vx, ix}--since the odd adapted metrics satisfy 

[D I = - 1  ==~ (H,D)=O and [D[=O ~ (H,D) 6AIs 

In fact, it is a straightforward matter to verify that 

(( ~ggVx~TVy~) (VgVx,i~)'~ H/'(Vx, Vy) (Vx,i~o)~ 
(V.ix, (V.ix,i~) ] = : ~, (ix, v r )  (ix,i~) ] 

1 ( 0 (Wx , i~ ) )  _[_ 1(', ")1 ~ ( V X ~ ) ( Y , _ ) -  (Vyt~)(X,_) -It(f, qo)) 

where [(., .)[ is the Z2-degree of the metric (i.e., 0 or 1). We may also write a 

Z-expansion for the matrix (•H', ") in terms of the frame {Vx~, ix~, } as follows: 

( v . . , . )  = ~,, 
kkl 

where ~k is a matrix with entries in Akg, and it is explicitly given in terms of 
the graded metric sections by 

0 jg2j-l~ 
(j - 1 ) g : j _ :  0 ] '  J > 1 

~2j--I = 

0 ( 2 j -  1)L2j-: ' 

with 

1 (P1 + ~n 
r/1 = 2 0 

and 

(even metric) 

j _> 2 (even metric) 

0 ] 6n(X,Y) = (Vxn)(Y,_) - (Vya)(X,_) (odd metric) 
L1 } ' 

jL2j 

~2j = 0 (2j + 1)K2j 

�89 ( (2 j  - 1)K:j 0 ) '  

(even metric), 

j _> 1 (odd metric). 

Note in particular that ~?k = 0 if and only if ~k = O. Now write 

V H V xo = E A,~b V x~ + E B'~ix~ , 
b>_l ~>1 

v .ixo = ~ cob V x, + Z vo~ix~ , 
b>l fl~l 
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so that the matrix coefficients A, B, C, and D are given by 

k>~ t>o 
This may be arranged so that the expansion becomes ordered by Z-degrees, 

namely, 

D = --  [ l l G - l ~ k - l V - 1  " 

k_>l k_>l l=l 

Note that the expansion has no matrix with entries in A~ --~ C~176 Also note 

that (~ 
O1 

~ ~ L I ~ -  1 (odd metric) 

and 

( ( P 2 -  K l w - l K t ) g  -1 0 ~ (even metric), ) 
\ 0 L2w -I ] 

02 ---- 1 (3K2t~-1  - (Pt + ~/~)(/~-l)tLl/~-I 0 
%k 0 K~(t~-l)  t -- L I ~ - I p I ( ~ - I )  t 

(odd metric). 
This time we want to impose conditions on the graded metric tensors, in order 

to conclude that 83 = 0 because ~3 = 0, and 03 = 04 = 0 because ~3 = ~4 = 0, 

etc. Note that 
0 3 : 773 ~-I -- 712G-1~1 ~ - 1  -- 7}1G-1~2 ~ - 1 ,  

0 4 = T]4 ~ - 1  -- 7}3G-1~1 ~ - I  - 7}2G-1~2 ~ - 1  - 7~1G-1~3 ~ - I ,  

and therefore, in order to start an induction argument, the expressions to look 
at first are 

(P2 - glw-lg~)g-lgl ) 
0 

+ K l w - I L 2  

L2w-IK~ 0 
(even metric) 

rl2e-l~l  +//1G-1~2 -- 3K2tc-1p1 + (/'1 + 6tr 

0 (K9 t - L l t r  P1)(tr ) L1 

..}-LI~-IK2 
(odd metric) 
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and 

p 2 g - l ( p 2  - KIw-IK~) 
0 

(even metric), 

0 
L2w-I(L2 - K~g-' K1) ) 

1( 0 

(odd metric). 

3K2n-I(K2 - 0 P'(~-I)tL1) ) 

It follows that from the possibilities offered by the hypotheses of Lemma 3.3, only 

P2 - K l w - I K ~  = 0 and L2 = 0 (even metric) 

{*}= K 2 = 0  and L I = 0 ,  or ]  
(odd metric) f K 2 = 0  and P I = 0  

have the virtue of making 02 = 0, and at the same time 03 = r/3G -~ and 

~2~-L~2~ -~ = 0. 

3.4 LEMMA: Let (., .) be a homogeneous graded metric  whose Levi -Civ i ta  

connection is adapted to the canonical spli t t ing H.  A s s u m e  the corresponding 

hypothesis  from {*} is satisfied. If for some integer k > 4, ~3 . . . . .  ~k-1 = O, 

then 02 = 03 . . . . .  Ok-1 = O, and furthermore, 

Ok = ~lkG -1 and Ok+l = r}k+lG - l  - rJkG-l~lG -1.  

Proo~ The proof is by induction. One must also use Lemma 3.3 above and the 

explicit expressions for 02 and 03 to start off the induction process. II 

THE STRUCTURE OF p(.). Using the expansion ~k> l  0k above, and the formula 

for p in terms of VH obtained at the begining of this section, we may now under- 

stand the operator D ~ p(D) for D ranging over the basic elements {Vx,, ixo }, 

for a given frame {Xa}. In fact, a straightforward computation shows that 

k - 1  

k>1 i = l  k > l  

where "~ = ( 10 -01 ) is the matrix of F(D) = (-1) IBID. 
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3.5 LEMMA: Let (.,.) be a homogeneous graded metric whose Levi-Civita 

connection is adapted to the canonical splitting H. Assume the corresponding 

hypothesis from {,} is satisfied. If for some integer k > 4, ~3 . . . . .  ~k-1 = 0, 

then p2 -- Pa . . . . .  pk- i  = 0, and furthermore, Pk = (H - 7)Ok. 

Proof'. The proof is by induction. One must also use Lemmas 3.2-3.4 above and 

the explicit expressions for Pl, P2 and P3 to start  off the induction process. II 

We may now safely leave to the reader the details of the proof of the main 

proposition stated at the beginning of this section. One starts  by noting that  Pl 

is identically zero for the even metric, but Pl = 0 if and only if LI = 0 in the odd 

case. Using this fact one goes to the conditions under which P2 = 0. In the even 

case, P2 -- 0 if and only if L2 -- 0, and P2 - K lw- IK~  = 0, whereas in the odd 

case, Pl = P2 = 0 if and only if L1 = K2 = 0, etc. 

4. G r a d e d  m e t r i c s  of  s e c o n d  o r d e r  depth 

We shall now concentrate on homogeneous graded metrics adapted to the canon- 

ical splitting H which are of second order depth. This means that  there is a 

graded basis {Di} for DerAg such that,  

(D, ,Dj)  �9 Z Aks 
0<k*:2 

or that  any of the conditions of Proposition 3.1 are satisfied. In the even case, 

we therefore assume that  

where 

and 

(., . )=  ~, S t 

H P  = 2P, H K  = K, and P = K w - I K  t 

w = - ~ ( H , H >  

In the odd case, we assume that  

(, (.,./= 

where the only condition is H P  = P. 

and K(X; Y, ~P) - K(~;  Y, X) = (VY~)(X, ~). 

0) 
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4.1 PROPOSITION: Let (', "/ be a homogeneous graded metric of second order 

depth which is adapted to the canonical splitting H. There exists a connection 

V' such that, with respect to the basis {V'x, ix}, 

(go : )  with V'w=O (evenmetric), 

Proof: (1) (Even metrics) Use will be made of the isomorphisms w~: g* ~ s 

and w~: g ~ g*, and we shall identify an element s 6 s with the corresponding 

element s 6 Horn(g*, C~) mapping X into (X I s). Thus 

and ( oLs). 

If {s~} is a basis for g and {X,~} is the corresponding dual basis for g*, then 

w~(X)=Zw(x ,X~)s~  and w~s=E(Xals) (w-1)~ax~ 
O~ OZ~ 

where (w-1)~a is the a/~ entry of the matrix inverse to w = (w(xa, X/3)). In 

particular, the condition P = Kw- IK  t translates into 

P(X, ~; X, Y) = g(~o; Y, w b (K(x; X, .))) + g (~ ;  X, w b (K(x; Y,-))) 
(1) 

=-g(X;Y,w~(g(~o;X, . ) ) ) -  K(x;X,  wb(K(~;Y,.))), 

equivalently into 

(2) P(_, _; X, r )  = g (_ ;  X, o ( r ) _ )  = g(_ ;  II, e (X)_)  

where O(X) 6 Endg* is given by 

O(X)~o = w ~ (g(to; X, .)) (even metric). 

In fact, write 

P(_, _; X, Y) = ~ g (_ ;  X, X=)(cv-1)=~g(_; Y, X,). 
c,,fl 

It is now clear that (2) is true, and (1) follows by applying i x o i~ to both sides 

of this equation. Now use O(X) to change the connection V by letting it be 

V'x~ = Vx~ + O(X)~ 
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on s that is, 

V ~ x  = V x - i e ( x ) _  

as graded derivations of hs and the result follows. 

(2) (Odd metrics). For the odd metrics we make the following conventions: 

~ :  ~ --* s and ~b: s __. X~ 

are defined to be inverses of each other, with 

~b(~o)(.) = ~r ~o) and to(X; ~0/( ' )))  = ~/(X). 

The endomorphism e (X)  e End s is defined by 

e(X)~o = ~ (P(~o; X, .)) (odd metric), 

and the fact that P(_; X, Y) is symmetric on X and Y amounts to 

P(_; X, Y) = ~(Y; O(X)_) + ~(X; O(Y)_). 

We then change the connection V as before by letting V~x~o = Vx~o + O(X)~o, 

so that V ' x  = V x  - i o ( x ) _  as graded derivations of As and the result follows. 
| 

5. Curvature  of  even adapted metrics of  second order depth  

Let V ~ be a connection on E, and let g E $2(:~4) and w E A2s be nondegenerate. 

We shall assume that ( " , " / is an even graded metric on As of the type just 

described, namely, 

= 0. 

Using the formula for the graded Levi--Civita connection, the formula for the Levi 

Civita connection ofg on M, and the fact that for any t/E Aks ~-- Hom(Aks *, C~)  

one has R v' (X, Y)~-- - i R v , ( x , v ) ~  h we obtain 

=( ,(VxV, Z) ). 
( z,x)x,_) 
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Here ~7 stands for the Levi-Civita connection of g on M, and we have also used 

the fact that V'w = 0 to conclude that iRv,(x,v)w = O, and therefore 

w(Rv'(X,Y)x, cp)+w(x, Rv'(X,Y)~)=O for all X,~ c s  

That  is, RV'(x,Y) E spw, and we may write 

w(Rv'(x,Y)_,~)=w(R (X,Y)r etc. 

Similarly 

Oo) ) = ( o 
It follows that  

, 1 _ I v ,  . 
Vv~,V~ = V v , , r  - -~iR,,'(x.v)_, V % i ~ ,  = 2 9- ' (~,(~"( . .x)~,._)) +zvs,,a. 

1 t v, v~ = - ~ v  _,(w~R~,(,y)~,_)), v,  i~ =0. 

Remark: Note that  the V'-component of Vv~ V~, is VxY, where V is the 

Levi-Civita connection of 9. Also note that we have used a dot �9 to indicate the 

argument with respect to which a 1-form on M is to be transformed, via g - l ,  

into a vector field. 

THE GRADED CURVATURE. It is a straightforward matter to verify from the 

definitions that the graded curvature tensor, when combined with the graded 

metric, has the following symmetries: 

(R(DI,  D2)D3, D4) = - ( -  1)[D3 liD, [(R(Dz, D2)D4, D3}, 

(R(D1, 02)03 ,  O4} = - ( - 1 )  ID111D~I (R(D2, Dz)D3, D4}, 

(-1)ID'IID31(R(Dz, D2)D3, D4) + (-1)ID31ID21(R(D3, D1)D2, D4} 

+ (-1)ID2iID'i(R(D2, D3)Dx, D4} = 0, 

(R( DI, D2)D3, D4) = (-1)(ID31+ID~ (R( D3, D4)DI , D2}. 

The first is true because V is metric. The second follows directly from the 

definition of the graded curvature. The third is exactly Jacobi identity (using 
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the fact that ~ is torsionless), and the fourth follows from the others. In fact, if 

we denote by S(D1, D2, D3, D4) the left hand side of the third identity, then 

0 = (-1)IDIlID3Is(D1, D2, D3, D4) - (--1)(}DII+ID3i)ID*IS(D4, D1, D2, Da) 

4- (--1)(ID~I+IDsl)ID2I+(ID~I+ID2I)(ID3I+ID4I)S(D2, D3, D4, D1) 

- (-1) ID~ [[D3I+(ID~I+ID2I)(IDsI+ID4I)S(D3, D4, D1, D2) 

= 2((R(D1, D2)D3, D4) - (--X)(IDII+ID21)(ID31+ID*I)(R(D3, D4)DI, D2)). 

Note that 

(R( D1, D2)D3, D4) =DI ('~ D2D3, D4) --(--1)[D~IID2I D2(~ D1D3, D4) 

- (~[D1,D2]D3, D4) --k (--1)lV21lVzl(~v~D3, '~D2D4) 
-- (--1)IDlI(ID21+IDzl) (~  I92D3, '~ D~ D4). 

It is then a straightforward matter to verify that 

(R(ix, i~)ir i,7) = O, (R(ix, i~)iw, V~w) = O, 

(R(i• i~)V~, V~w) = w(R v' (Z, W)X, ~o) 

+ ~ ( R  ~' (g-l(~(R~'(. ,  W)~,_)), Z)~,_) 

+ ~ ( R  ~' (g-l(~(R~'(. ,  W)~,_)), Z)~, _), 

(R(~, Vy)~, Vw) = - w(Rv'(W, V)~, X) 

+ ~ ( R  ~' (g-~(~(R~'( �9 , W)x,_)), Y)~,_), 

, I I 1 (R(i~, Vy)Vz, Vw) =~{~((V'~(R~'(W, Z)) 

- RV'(VyW,  Z ) - R v ' ( W ,  VyZ))x,_)  }, 

(R(V~, Vy)Vz, Vw) = g(Rv(X, Z)Z, W) ~ ( R  v' v' ' ' ' - (W,Z)R (X,Y)_,_) 

+ �88 Z)RV'(Y, W)_,_) 

+ w(Rv ' (Y ,Z)R  (W,X)_,_). 

Remark: One notes from these formulae that the graded manifold (M, AC) 

equipped with an even, adapted, second order depth metric is flat, if and only 

if the Riemannian base (M, g) is flat and V' is a flat connection on the bundle 

E ~ M .  
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ON THE NOTION OF SECTIONAL CURVATURE, The formulae just obtained also 

show that any notion of sectional curvature intended to work on the (2, 2)- 

dimensional planes generated by {V~, V~,, ; i• i~} must give an invariant mean- 

ing to 
(R(ix,i~)V~,V~) 

F(ix, i~)e(v~z, v ~ )  

for some Sp,,-invariant symmetric functional F (e.g., F(ix, i~) = ]w(X, ~o)[), and 

some Og-invariant skew-symmetric functional G. In particular, since 

(R(i x, i.)V~, V~,) w(Rv'(Z, W)x, ~o) 
F(i• i~o)G(V~, V~v ) -- F(i x, i~o)G(V~, V~,) 

mod A 2 s 

and since R V ' ( z , w )  E sp~, an Sp,~-invariant meaning for the left hand side 

immediately implies that for any q> E Sp~, RV' (z,  W) o r = ~ o RV' (z,  W) and 

therefore RV'(Z, W) must act like a scalar, say p(Z, W)I. This, however, is too 

restrictive. Note, on the other hand, that the classical expression for the sectional 

curvature makes good sense on the graded setting for even second order depth 

metrics, when restricted to the (2, 0)-dimensional planes generated by {V~, V~,}: 

(n(v~,, v~,)v~,, v~,) 
~(x, Y) = (v~, v~) (v~ ,  % )  - (v~, v~)2 

5.1 PROPOSITION: Let ( �9 , ) be the even graded metric adapted to the 

canonical splitting H corresponding to the data {9, w, V'}. The graded manifold 

defined by hE has constant graded sectional curvature on the (2, O)-dimensional 

planes generated by {V~, V~, }, if  and only if ( M, 9) is a Riemannian manifold of 

constant curvature, and the curvature of V' in E satisfies R v' (X, Y ) R  v' (X, Y) = 

O,/'or all X and Y. 

Proof: This follows immediately from the formulae above. The first assertion is 

clear. But then, the 2-form 

g(X,y)2)w(RV' v' 3 (X,Y)R (X,Y)_,_) 
4(g(X, X)g(Y, Y) - 

must be constant; hence, zero. Thus RV'(x ,  y ) R v ' ( x ,  Y) = 0 for all X and Y. 

I 
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THE GRADED RICCI TENSOR. The graded Pdcci tensor GRic is defined as the 

graded tensor whose value on the pair of graded derivations (D1, D2) is given by 

the supertrace of the endomorphism 

D ~ R(D,D,)D2. 

The supertrace of this endomorphism may be computed with the aid of the graded 

metric in terms of a given basis. In fact, if we write 

then 

m 

c= l  ~=1 

e= l  B=I 

and therefore 

( (R(V~o, D1)D2, V~r (R(V~r D,)D~, ix~) 
(R(ixo, D,)D2, V'x, ) (R(ixo, D1)D=, ixo) ] 

xo. x . ,  
D J k  (/x,,VSr (ix,,i• ) 

> ,  
= (R(i. , D])D2, V'. ) (R(i. , D1)D2, i. ) ' 

If the basis is orthonormal, then the computation of the inverse is easier and 

the computation of the graded Ricci tensor simplifies considerably. But when no 

orthonormal basis is given a priori, the graded Ricci is computed from 

GRic(D,,D2) = Str k (R(i. ,D1)D2,V'. ) (R(i. ,D1)D2,i. ) ' 

The proof that GRic(D1, D2) = (-1) ]DtllD2l GRic(D2, D1) boils down to 

(_I)ID, I +[D,t y~(R(DI,  D2)ixo,ix~>(w-1),~ 
c,,/9 

- ~(R(D1,D,)V~x. ,  V~v,)(g-')~b = 0 
a,b 
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which is obviously satisfied in the even case. For the odd metrics the graded 

symmetry of the Ricci tensor amounts to verifying the equality 

(1 + ( -1)  IDol +rD21)Z(R(D1 ' D 2 ) V ~ ,  i~)(g~)~o = 0, 
a,f~ 

which is not so evident and has to be verified directly after computing the matrix 

coefficients (R(D1, D2)V~o, ix~ ), and taking the contraction with (tr In our 

case, for the simplest even adapted metrics, a direct computation yields 

GRic(ix, i~) = - ~ w ( R  v' ( g - l ( w ( R V ' ( . ,  Xb)X, _)), Xo)~, _ ) ( g -  1)ha, 

GRic(ix, V~) = w({V~r (Rv ' (y ,  x b ) ) - R  (VxaZ, Xb) 

(Y, V xo } x, _) (g- 1) o, 

GRic(V~r V~) = RicV(X, Y) + ~w(R v' (Y, Xo)(g-1)obR v' (Xb, X)_ ,  _)  

+ ~w( Rv'  (g-l(w(RV'( �9 , Y)X~,_)), Z ) x z , _ ) ( w - 1 ) ~ ,  

where RicV(X, Y) is the Ricci tensor of the Levi-Civita connection V of g, and 

there is a sum understood over repeated indices. 

5.2 PROPOSITION: Let ( - , - ) be the even graded metric adapted to the 

canonical splitting H corresponding to the data {g, ~, V~}. Let V be the Levi- 

Civita connection of g. I f  the graded manifold defined by As is Einstein, then 

Ric v (X, Y) = 0. 

Proof'. For the graded manifold AE to be Einstein, a A = Ao + A2 + . . .  E As 

is needed such that A<01, 02) = GRic(01, 02). Taking (O1, 02) = (i x, i~), the 

formulae above shows that A0 = 0. But then, this implies that RicV(X, Y) = 

Aog(X, Y) = 0 when (O1, 02) = (V~r V~). | 

5.3 PROPOSITION: Let ( �9 �9 ) be the even graded metric adapted to the canon- 

ical splitting H corresponding to the data {9, ~, V~} �9 Let V be the Levi-Civita 

connection o? g. The graded mani?old de/~ned by As is Ricci ttat in the graded 

sense i?and only i? the Riemannian base manifold is Ricci nat (Ric v (X, Y) = 0), 

and the ?ollowing two equations are satistied: 

--1 I (R (Y, Xb))-R (VxoY, Xb)-R (Y, VxoX )}=O 
a,b 
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and 
V ~ Z(g-1)baRv '  (X, Xa)R (V, Xb) = O. 

a,b 

Proof'. Again, the assertion is a straightforward consequence of the explicit 

formulae for the graded Ricci tensor. Clearly RicV(X,Y) has to vanish inde- 

pendently. Now, the first equation in the statement is just the vanishing of 

GRic(i• V~). The second equation is equivalent to the vanishing of the second 

term in the right of GRic(V~,V~), and this in turn implies the vanishing of 

GRic(i• i~), which is the same as the vanishing of the third term in the right of 

GRic(V~, V~). | 

6. A d a p t e d  metr ics  on differential forms 

We now want to specialize some of our results to the graded manifold defined by 

the algebra f~(M) of differential forms on the smooth manifold M and to closely 

investigate the role played by the exterior derivative d in the presence of adapted 

graded metrics. Our first result is the following: 

6.1 PROPOSITION: Let g be the (1, 1)-dimensional Lie superalgebra generated by 

the adapted derivation H = iId, and the exterior derivative d. Then, g does not 

exponentiate to isometries for any graded metric on f~( M). Specifically, H = iid 

cannot generate isometries, nor conformal transformations for any graded metric 

adapted to it. 

Remark: On the other hand, it has been shown in [9] that d itself does generate 

isometries for a class of odd graded metrics. 

Proof." We shall prove that H cannot generate conformal transformations. Let V 

be any linear connection in TM.  Let A E ~2(M) be an invertible even differential 

form, and suppose that for any X, Y E 3~(M), 

(HA)(ix, iv) + AH(ix, iF) = ([H, ix], iv) + (ix, [H, iv]), 

(HA)(Vx, iF) + AH(Vx,  iy) = ([U, Vx], iF) + (Vx, [H, iF]), 

(HA)(Vx, Vv) + AH(Vx, Vy> = ([H, Vx], Vy> § (Vx, [H, Vv]). 

The first of these equations implies 

AH(ix, iv) = - (2  + HA)(ix, iv), 
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where we have used the fact that ix and iy have degree - 1  for the Z-grading 

generated by H. In particular, - (2  + HA)/A is an eigenvalue of H; that is, 

HA -- - (2  + kA), for some nolmegative integer k. On the other hand, the second 

condition for H to generate (local) conformal transformations implies 

AH(Vx,  iv) = - (1  + HA)(Vx, iy) 

and this time HA = -(I + kIA) (using the fact that Vx has degree zero). Hence, 

(k - k~)A = -1; that is, A is a constant. In particular, HA = 0 and therefore, 

AH(ix, iy) = -2( ix ,  iy) and AH(Vx,  iy) = - ( V x ,  iy), 

which imply (ix, iy) = 0 and (Vx, iy) = 0, but these two conditions contradict 

the fact that the graded metric ( �9 , �9 ) is nondegenerate. | 

Remark: For the sake of completeness (and uniformity in our use of V) we shall 

now investigate whether or not d generates (local) conformal transformations. We 

shall need the results contained in the next Lemma based on the decomposition 

of graded derivations of fl(m) as described in [4] and [5]. 

6.2 LEMMA: 

(1) Let ~7 be a torsionless connection in TM.  Then 

[Vx, d] = - V v x  + iR(_,_)x and [d, ix] = V x  + i v x  

(2)  

as graded derivations of fl(M). 

Let V' be an a~ne connection on TM. Let K 6 fll (M; TM) and L 6 

fl2(M; TM) be the differential forms with values on the tangent bundle 

of M defined by 

K(X)  = X and L(X, Y) = T v' (X, Y) = V~xY - V~yX - [X, Y]. 

Then, d = V}r + iL(_,_). 

Proof'. (1) Let at E ~2~ = C~176 Then, for any Z E 3~(M), 

([Vx,dl f ) (Z)  = (Vx(d  f ) ) ( Z ) -  (d (Vx f ) ) (Z)  

= X((df)(Z)) - ( d f ) ( V x Z )  - Z ( X I )  

= x ( z l )  - z ( x f )  - ( V x Z ) l  = (IX,  z ]  - V x Z ) / =  - ( v z x ) l .  
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Therefore, [Vx, d] = -Vvx + iK(_,_;x) for some 2-form K(_, _; X) with values in 

~(M). Now let 8 6 f~1(M). Then, for any Z, W 6 :~(M), 

([Vx, d]0)(Z, W) = VwX(O(z) )  - VzX(O(w)) .  

On the other hand, it is easy to check that 

(Vvx0) (Z ,  W) = V z X ( O ( W ) )  - V w X ( e ( Z ) )  - O ( V v z x W  - V v , , x Z ) .  

Thus 

- (Vvxe) (z ,  w )  - O(Vv~xW - Vv~xZ)  = ([Vx, d]0)(z, w)  

and therefore 

(iu(_,_.,x)O)(Z, W )  = - O ( V v z x W  - VvwxZ). 

But now 

Vv~xW - Vv~xZ = VwVzX - VzVwX + [VzX, W] - [VwX, Z] 

= R(W, Z)X + Vtw, z jX  + [VzX, W] - [VwX, Z]. 

Finally note that, after some easy computations, 

Vtw, z lX + [VzX, w]  - [VwX, z] = o. 

Therefore 

(iK(_,_;x)O)(Z, W )  = - O ( V v z x W  - VvwxZ) 

= - O ( R ( W ,  z)x) = iR<z ,w)xO = (iR(_,_)xO)(Z,  w) 

from which the first formula in the statement follows. The second is proved in a 

similar manner. 

(2) Let / E n~  Note that (V~c(_) +iL(_,_)). f  6 fl*(M), and since iL(_,_).f = 

0 we have, on the one hand, 

((V~r + i z ( _ , _ ) ) ] ) ( X )  =. (V~(_)f)(X) = V~<(x)f = K ( X ) f .  

But, on the other hand, we know that (d/)(X) = XI, so that K ( X )  = X as 

claimed. 
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Now let 8 e ~I(M). Note that (V~(_) + iL(_,_))O �9 122(M), and 

((V}r + iL(_, ) )O)(X, Y) =(V'xO)(Y ) - (V~0)(X) + O( L(X, Y) ) 

=X(O(Y)) - Y(8(X)) 

- O(Vrx Y - V'yX + L(X, Y)) 

But ~ , Y  - V~,X = [X, Y] + TV'(X, V). Therefore 

((V~(_) + iL(_,_))O)(X, Y) = dO(X, Y) + O(L(X, Y) - TV'tX, Y)) 

and therefore L(X, Y) = T v' (X, Y). | 

Let A E fl(M) be an even invertible differential form, and suppose that for 

any X, Y E X(M), 

(dA)(ix,iy) + Ad(ix , ir)  = ([d, ixl , iv) - (ix, [d, ir]}, 

(d A)(Vx, iv} + A d(Vx, iv) = ([d, Vx], iv} + (Vx, [d, iv]), 

(d A)(Vx, Vy) + A d(Vx, Vy) = ([d, Vx], Vy) + (Vx, [d, Vy]). 

Then, the first of the conditions for d to generate local conformal transformations 

yields 

(d A)(ix, iv) + A d(ix, iv) = (Vx, i y )  - -  (ix, Vv} + (ivx,  iv} - (ix, ivv). 

The second of the conditions yields 

(d A)(Vx, iv} + A d(Vx, iv) = (Vx, Vy) - (iR(_,_)x, iv)+ (Vvx, iy)+ (Vx, ivy) 

and finally, we obtain from the third, 

(dA)(Vx, Vv) + Ad(Vx,Vv} =(Vvx ,Vy}  + (Vx,Vvy} 

- (iR(_,_)x,Vr)- (Vx,iR(_,_)r). 

Note that there is no f~~ component in (d A)(ix, iv)+)~ d(ix, ir). Therefore, 

the corresponding fl~ component appearing in the right hand side of it must 

vanish identically. That is, Ko(X, Y) = K0(Y, X). The same argument works for 

(d ~)(Vx, ir)+ ~d(Vx, it). This expression has no fl~ component; hence, 

Po(X,Y) = 0. In particular, the graded metric cannot be even, and if it is 

odd (i.e., homogeneous) then Ko must be nondegenerate and therefore defines a 

Riemannian metric on M, as found in [9] by other means. 
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REPRESENTATION OF g BY ~ ' .  We shall restrict ourselves for the moment to 

adapted metrics of second order depth in order to show that, even in this simpler 

case, the Lie algebra g cannot in general be represented by V. We shall look at 

the curvature coefficients (R(H,d)D1, D2} and {R(d, d)D1, D2} for D1 and D2 

ranging over the basic set of derivations {V5r iy }, and with V' be chosen so that 

V~x Y = V x Y  + O ( X ) Y  

with • being the Levi-Civita connection of a metric on the base (g = P0 or 

tr = Ko, depending on whether the graded metric is even or odd, respectively). 

so that TV' (X, Y) = O ( X ) Y  - e ( Y ) X .  Note first that 

(R(H, d)D1, D2) = H(VdD1,  D2) - (VdD1, VHD2) -- (VdD1, D2) 

- d<~'HD1, D2) + (--1)JD'J<VHD1, ~'dD2). 

But we have already found that second order depth adapted metrics have the 

property that •HD = 0 for D E {V5r iy}. Therefore 

<R(H,d)DI,D2) = H<VdD1,D2) - (VdD1,D2), D i e  {Vx,iy}.  

In particular, <R(H,d)D1,D2) will be non-zero, as soon as the coefficient 

(VdD1,D2) contains a non-zero 2-form. To investigate this we may write d 

as in Lemma 6.2 (2), and use the Christoffel symbols at the beginning of w for 

E = T ' M ,  together with the definition of the graded metric. Thus, for example, 

we find 

1 . . 1 
, ~,, , ( g ( _ ) , X ) _ ,  Y ) .  (~IgdVSe,ir) = --~{ R (K(_),X)_, r} = -,.co(R v' 

But it is now evident that (R(H,d)V 'x , i y  } will not be zero, since this 2-form 

is in general non-zero. The reader may verify, for example, that even though 
U' 

(VdVS~, V~.} would make the a-form ~o(R (X, Y)L(_,_),_) appear, it is never- 

theless zero (as a consequence of V'w = 0). Similarly, an easier computation 

shows that ( V a i x , i r )  is always a 1-form, but (Vdix,V~} is again a scalar 

multiple of the 2-form w(RV'(K(_), X)_, Y). On the other hand, we have 

(R(d. d)D1, D2) = 2(d(VdD1, D2} + (--1)lD'l(~'dD1, ~'dD2)), 

which again may be explicitly computed from the Christoffel symbols and the 

definition of the graded metric. More tedious and lengthier computations show 

that these are in general non-zero because dw is not necessarily zero, and because 

the same non-zero 2-form above appears. 
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ON THE STRUCTURE OF Vd. From the definition of the graded Levi-Civita con- 

nection, one may compute the connection coefficients (VdVX, Vy), (VdVX, iv) ,  

( V d i x ,  Vy), and (~'diX, iv) .  The results, however, are rather complicated and 

not particularly useful (as they were for V ~  in w Nevertheless, there are some 

general conclusions that can be drawn for d and Vd: For example, (d,d) = 0, 

which follows easily by writing d = VK as in Lemma 6.2 above with a torsionless 

connection V. 

6.3 LEMA: Let ( �9 , �9 ) be any homogeneous graded metric on f~(M), and let ~7 

be its Levi-Civita connection. Then, V a d = O. 

Proof: This is a straighforward calculation from the formula for the Levi-Civita 

connection: For any homogeneous derivation of degree ID[, we have, 2(Vd d, D) 

= -D(d ,  d) and the assertion follows from the fact that for any graded metric 

(d, d) = 0. | 

6.4 LEMA: Let ( �9 , �9 ) be any homogeneous graded metric on gl(M), and let V 

be its Levi-Civita connection. Let 

p(d, D) = d(H, D) - (-1)IDI D(H,  d) - ([d, D], H). 

Then, 
2(VH d, D) = H(d, D) + (1 - IDI)(d, D) + p(d, D), 

2(VdH, D) = H(d, D) - (1 + [DD(d, D) + p(d, D). 

Moreover, p(d, D) = 0 identically when ( , , �9 ) is H-adapted and even. When 

the graded metric/s H-adapted and odd, we have 

p(d, i x )  = -go(_; X), 

p(d, Vx) = d(K0(X; _)) - (VxKoa)(_;_) - Ko(VX; _), 

where Koa(Z; W) = Ko( Z, W)  - Ko(W, Z). In particular, if Ko is a Riemannian 

metric and V its Levi-Civita connection, then p(d, Vx) = O. 

Proof." Using the formula for the Levi-Civita connection we have 

2(VH d, D) = H(d, D) + (1 - [Vl)(d, D) 

+ d ( g ,  D) - (-1)IDLD(H, d) - ([d, D], H), 

2(~P'dH, D) = H(d, D) - (1 + [DD(d, D) 

+ d(H, D) - (-1)IDID(H, d) - (H, [d, D]), 
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thus proving the formulae of the first part of the statement. As for the evaluation 

of p(d, D), the assertion for even adapted metrics follows from the fact that 

2(H, D / = D(H, H). For odd adapted metrics, we know that (H, ix) = 0. This 

implies (H, iK) = O, for any differential form K with values in TM. On the other 

hand, we know that (H, Vx) �9 ftl(M). In fact,(H, Vx) = K0(X;_). It is then 

easy to check e.g., writing d = 0aVx. (summation convention)--that 

(ix(H, d>)(W) = Ko(X; W) - Ko(W, X), 

and since [d, ix] = V x  + ivx ,  it follows that 

p(d, ix) = d(H, ix> + ix (H, d> - ([d, ix], H> = -Ko(_; X). 

Similarly, a straightforward computation yields the formula for p(d, Vx). | 

6.5 LEMMA: Let ( �9 �9 ) be a homogeneous, H-adapted, graded metric on ~(M). 

Then 
P o(_, X) + Pc+(_; _, X) (even metric), 

(d, Vx) = -Pla(_;_, X) + Po+(_;_, X) (odd metric), 

where Pc+ and Po+ belong to the Kernel of some Young symmetrizers (analogous 

to those used in Proposition 2.3). Similarly, 

( -Kla(_; _, X) + Ko+ (_; _, X) 
(d, i x ) =  go(_;x)+ ge+(_;_,X) 

(even metric), 
(odd metric). 

ADAPTED METRICS ON THE PLANE H-d. We finally want to look at the restric- 

tion of an adapted metric to the f/(M)-span of the derivations H and d. Since 

(d, d) = 0, we may write 

(H,H) (H, d)'~ 
<a,.> ;). 

Now, we would like to define a degree +1 derivation d' in the Z-grading generated 

by H, and in the f~(M)-span of H and d, such that (H, d ~) = 0, with (d', d') = 0 

and d' o d' = 0. 

6.6 LEMMA: Let d' = f d +fill. Then 

[H,d'] = d' , = ,  f e n~ and e hi(M). 
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In that case, (d', d') = 0 and d' o d' = 0 r ~ = - d f.  

Proof." This is a simple computation: First, note that 

[U, d'] = ( f  + (H f ) )  d +(H~)H, 

and the latter is equal to f d + ~ H  if and only if H f  = 0 and H/3 =/3,  and the 

first statement follows. For the second, note that 

(fd+13H) o ( f d + ~ H ) =  f ( d f  + ~ ) d + d ~ H .  | 

Remark: The question arises as to what is the relationship between the coho- 

mology of the complex {~(M);  d} and that of {fl(M); d'}. The answer is given 

in the following Lemma (for related work on sh i f ted  c o h o m o l o g y  see also [14]). 

6.7 LEMMA: Let f 6 ~~ be a nowhere vanishing[unction on M. Let Hk(M)  

be the k-th cohomology group of the de Rham complex, and let H~(M) be the 

k-th cohomologygroup of the complex {fl(M); d'}, when d' = f d - ( d  f )H .  Then 

Proof: It is a simple computation. | 

6.8 PROPOSITION: Suppose d' = f d - ( d  f ) H  for some non-vanishing function 

f o n M .  

(1) Let ( �9 , . I be an even  adapted metric. Then 

(d',H) =O , = ,  d w =  2 ~o , = ,  ~o e H2(M). 

(2) Let ( �9 , �9 ) be an o d d  adapted metric. Then 

( d ' , H ) = 0  r  ( d , H ) = 0  r K o ( Z , W ) = K o ( W , Z ) ,  

that is, Ko defines a Riemannian metric if and only if the H-d plane is 

isotropic. 

Proof: If the metric is adapted and even, then (H, H)  = w implies (H, d') = 
1 t d w. Since Hw = 2w, we have 

l d ' w  2 ( f d w  - 2(dr)w).  
2 
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When the adapted metric is odd, we know that ]D I = - 1  implies (H, D / -- 0. 

In particular, since H = ild ----- @aix~ (summation convention), we clearly have 

(H, H) = 0. On the other hand, we also know that [D I = 0 implies (H, D) 6 

~I(M),  and we may write 

A(X,_) = (H, Vx). 

Writing H = Oaixo (summation convention), it is easily seen that 

A(X,_) = (H, Vx)  = go(X,_). 

On the other hand, writing d -- @aVx, (summation convention) we have 

7/(Z, W) = (H, d)(Z, W) = Ko(Z, W) - Ko(W, Z). 

Finally, if d' = f d - ( d r ) H ,  we obtain (H, d') = fT/and the second statement 

follows. | 

Remark: Note what are the conditions on the simplest adapted even graded 

metrics to achieve this situation. If {Xa} is a local frame in M, and {0 a} is the 

dual frame, the vector-valued 1-form K of the proposition above may be written 

as )-~ 0 ~ <9 X~. Define O%(X) as usual: O(X)Xb = ~'~ 0%(X)Xa. Then 

TV' (X, Y) = (9(X)Y - O(Y)X = E(((9~b A ob)(x, Y) )Xa. 
a 

Let T ~ E ~2(M) be defined as ~[]bO% A 0 b. Then we may write d = 

~ v xo + Taixo), and therefore 

(H,d) : - E O~b A Ob A O~Wac = - E( @~bw~ - @~cw~b) A Ob AO~" 
a,b,c b<c 

Thus (H, d) vanishes (i.e., with f = 1) if and only if (9% e sp(w)--the symplectic 

algebra of w. Using the definition of (9 in terms of the data w and Kx, together 

with the property K(Y, X, Z) - K ( Z ,  X, Y) = (Vx~)(Z,  Y), the obstruction boils 

down to Vw = 0. Thus 

OEsp(~o) ~ V w : 0  ~=~ d w : 0 .  
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